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This work presents algorithms of the Monte
Carlo method, developed to calculate the
fields of the mean and higher order moments
of

(1) albedo 5 , transmittance 7 , and
absorptance $ ; and

(2) upward , ↑  and downward , ↓  radiances
in a given direction

at the corresponding boundaries of the
horizontally (and vertically) inhomogeneous
clouds occupying the layer +E ] +W≤ ≤ .

The model calculations are made under
assumption that the optical depth ( )τ &

U ,

( )&

U [ \ ]= , , , the cloud top ( )+W U
&

, and/or

bottom ( )+E U
&

 heights are piecewise
constant functions in space:

• 1D model ( ; ). The cloud optical depth
depends only on the [  coordinate, and it is
constant within each pixel: ( ) ( )τ τ τ&

U [ �= = ,� ���= 1,... . The cloud top and bottom
heights are constant: +W U +W( )

& = ,
+E U +E( )

& = . The cloud is infinite in the < -
direction.

• 2D model ( ;= ). The optical depth
depends on the [  and ]  coordinates, and it
is constant within each pixel:

( ) ( )τ τ τ&

U [ ] � �= =, , ; the cloud top and

bottom heights are defined as: ( ) �+WU+W =& ,

( ) �+EU+E =& , � 	�
= 1,... , N Q]= 1,... .

Because it is possible that τ � �, = 0, we

defined the cloud top height +W  as the
highest level in the atmosphere, and cloud
base height ��  as the lowest level where

τ � �, > 0 , � ���= 1,... , N Q]= 1,... . The cloud

is infinite in the < -direction.

• 2D model ( ;< ). The optical depth and
the cloud top height depend on the [  and \
coordinates,     and    they     are   constant

within each pixel: ( ) ( )τ τ τ&

U [ \ � �= =, , ,

( ) ( )+W U +W [ \ +W � �& = =, , , � ���= 1,... ,

M Q\= 1,... . The cloud base height is
constant: +E FRQVW= . The cloud is infinite
in the ; - and < -directions.

The realizations corresponding to these
models will be called Case 1, Case 2, and
Case 3, respectively.

Calculations are made assuming:

- no atmospheric effects;

- Lambertianly reflecting underlying surface
with albedo � � ;
- periodic (along the ;  (and < ) direction)
boundary conditions;

- a unit parallel solar flux )  incident on the

cloud top in the direction ( )&

ω ξ ϕ⊕ ⊕ ⊕= , ,

where ξ⊕  and ϕ⊕ = 0 �  are the solar zenith

and azimuth angles.

The net horizontal flux + , nadir , �  and
oblique , �  reflectivities, and zenith
transmissivity ( , � ) are calculated from the
formulas

( )+ 5 7 $ $ = − − × − −1 1 ,

( )
( )( ) ( ), , ) F! " = × ×↑ ↓

⊕π ,

where F⊕ ⊕= cosξ .



Calculation techniques

The radiation calculations in clouds are
made using numerical simulation technique
and the method of local estimate [1].

Numerical simulation technique. The
method essentially consists of the computer
simulation of cloud field realization and the
solution of radiative transfer equation in this
realization. The method advantages are that

- it can be used to simulate cloud field
realizations of any complexity, provided
they can be constructed on computer; and

- it can estimate the radiative characteristics
with prescribed accuracy without additional
approximations and simplifications.

The method deficiency is that it consumes
much computer time, especially when used
to simulate too complex cloud realizations
with irregular geometry or/and optical
(microphysical) parameters.

Method of local estimate. The method of
local estimate is based upon approach
developed for estimating the linear

functionals ( )- I K# = ,  of solution of the

integral equations of the second kind

I .I= + ψ .

The general theory of Monte-Carlo dictates
that a linear functional - $  is calculated by
estimating the mathematical expectation of
the random quantity η

( )- 0 4 K [% & &&

'
= =

=
∑η &

0

0

, (1)

where

0  is the mathematical expectation over the
ensemble of particle trajectory realizations;

1 0  is random number of the last state in
Markov chain, with the weights given as

4 4 Z 4 Q( (0 11 1= = × ≥−, , ,

Z  is the single scattering albedo;

( )& &
&

[ U ;= ∈,ω , ;  is the phase space of
coordinates and directions.

In [1] it is shown that the intensity of
radiation passing through the plane ] ]= ′  in
direction ⊕∗ ω≠ω &&  can be calculated from

formula (1) by letting
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and, correspondingly, the fluxes can be
calculated by
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Here, the scattering phase function

( ) ( )J J F
& &

ω ω π, /′ = 2 , [ ]F = ′ ⋅
& &

ω ω  and

( )τ ω& & &

U UHCIEJ, ,  is the optical path between

point 
&

U  and the point 
&

UHCIEJ  located at the
boundary of the cloud layer:
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Upon reflection from the underlying surface,
the particle weight is multiplied by $L .
Because the Lambertian surface reflects
according to the F π  law, formula (2) now
looks
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The trajectory modeling is made using
standard algorithms [1]. For more eff icient



computation, in both techniques the particle
free-path length is simulated using the
method of maximal cross section. The idea
of the method is to use, instead of the
horizontally inhomogeneous medium, a
surrogate scattering medium with a constant
extinction coefficient σ max  such that

( )σ σ&

U ≤ max .

Using this, the direct simulation of the
radiative transfer process leads us to a
standard procedure of simulation of the free
path length only between “physical”
collisions [1].

The proposed statistical simulation
techniques are advantageous in that (1) they
can calculate the radiative characteristics
simultaneously for the sets of single-
scattering and surface albedos, and calculate
the radiance for those same sets of
parameters and, in addition, for a number of
directions; and (2) they save current

computation results, at the end of each
batche, to a temporary file. Using this file, it
is possible either to proceed with the
computation until reaching a desired
accuracy or finish computation that was
occasionally interrupted. Such a
computation scheme significantly improves
the algorithm efficiency.

Accuracy of results

We used the direct simulation technique to
calculate the radiative fluxes for all cloud
realizations considered above. The radiance
in a given direction was calculated by the
method of local estimate.

The present calculations were made using
Pentium (120 MHz) and Pentium II (450
MHz). Table 1 gives the number of photons,
mean pixel level errors, and errors of mean
for each of the three Cases.

Table 1. The number of photons, mean pixel level errors (MPLE), and errors of mean (ME) for
Case 1, Case 2, Case 3.

Case Experiments $75 �� ( )↓↑,

No. of photons
×× 106 MPLE / ME, %

No. of photons
×× 106 MPLE / ME, %

1 1-4 50 0.15 / 0.02 50 0.37 / 0.07

2 1-5 300 0.30 / 0.01 200 0.7 / 0.03

6-8 200 0.35 / 0.01 100 2.5 /0.12

3 1-4 500 1.1 / 0.01 500 1.8 /0.02

Case 1. Each simulation was performed
using 50×106 photons so that the top of each
column received,    on    average,   1,56×106

photons. The cloud field realization
considered here is quite simple, so this
number of photons is sufficient to calculate



the flux and radiance fields with acceptable
mean pixel-level errors: 0.15% for $75 ��

and 0.37% for ( )↓↑, .

In addition, the mean values of 5 , 7 , $ ,
and + , as well the corresponding radiative
fields, are also calculated by method of local
estimate. Comparison of results, calculated
by different methods using same number of
photons, shows good agreement (Table 2).
In this simple realization the methods differ
little in efficiency.

Case 2. With the average number of photons
per column (∼ 460,000 in 1 through 5

experiments and ∼ 310,000 in 6 through
8experiments) used to calculate the flux
fields, the mean pixel-level error did not
exceed ∼0.3%. Unfortunately, the photons
used to calculate radiance fields was too few
to get acceptable accuracy, especially in the
6 through 8 experiments, performed with the
scattering phase function for U&  cloud. In

these experiments, ∼156,000 photons per
column on average have been used, which
gave the maximum mean pixel-level error of
∼2.5%. Therefore, we found it unreasonable
to submit our nadir reflectivity and zenith
transmissivity fields for intercomparison.

Table 2. Means / second-order central moments (SOCM) of V , 7 , $  and + , calculated by the
direct simulation technique and by the method of local estimate for Case 1. Given in parentheses

are errors of the mean for V , 7 , and $  (%). ( $ W = 0 , Z = 0 99. , ξ⊕ = 60 X , 50×106 photons).

The method of local estimate The direct simulation technique

V Mean / SOCM 0.4765 (0.01) / 0.0291 0.4764 (0.01) / 0.0291

Y Mean / SOCM 0.3248 (0.02) / 0.0047 0.3249 (0.02)/0.0047

Z Mean / SOCM 0.1986 (0.01) / 0.0306 0.1986 (0.01) / 0.0306

[ Mean / SOCM 0 / 0.1222 0 / 0.1224

Case 3. While making computations, we had
opportunity to see how radiation fields
depend on the number of photons used to
calculate them. The optical depth τ  of the
cloud realization in Case 3 has quite strong
gradients both along \^] - and _a` -axes
(Fig. 1a). Figure 1b presents the difference
between fields of albedo  5   calculated
using

300×106 ( 5300 ) and 500×106 ( 5500 ) photons

( ξ⊕ = 0, Z = 1). The comparison indicates

that, for the fragments of the cloud
realization in which optical depth varies
fairly smoothly, the difference
∆5 5 5= −300 500  is rather small:

∆R ≤ 0 004. . The number of simulated
photons becomes more important in the



realization fragments where τ  has large
gradients: ∆R  increases to ∆R ≈ 0 02. .

With computer resources available to us
presently, we ran 500×106 photons so that
the top of each column received, on average,
∼30,000 photons. Mean pixel-level error was

1.1% for $75 ��  fields and 1.8% for ( )↓↑,

fields. Obviously, for better quality of
radiation-field calculations, it is necessary to
either use more photons to achieve required
accuracy, or elaborate on the existing
algorithms, allowing them to calculate cloud
fields with complex optical-geometrical
structure more efficiently.

Conclusions

Phase 1 of I3RC was a test of
monochromatic radiative transfer through
clouds in the empty atmosphere. It should
help to identify reasons for possible
discrepancies between different calculation
methods. The next step for Phase 2 would be
to include experiments that incorporate
additional atmospheric components such as
aerosols and atmospheric gases. However,
before investigating the combined 3D effects
of clouds and effects associated with
gaseous and aerosol absorption (and aerosol
scattering), it seems advisable to
intercompare 1D plane-parallel models. This
would help to estimate the discrepancies
arising due to use of the different treatments
of gaseous absorption.
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Fig. 1. Case 3: dependence of the reflected
radiance fields on the number of photons used
for simulation ( ��=ξ⊕ Z = 1).
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