Skip to main content

GMI Publications

2021

Ruiz, D.J., Prather, M.J., Strahan, S.E., Thompson, R.L, Froidevaux, L., & Steenrod, S.D. (2021), How Atmospheric Chemistry and Transport Drive Surface Variability of N2O and CFC-11, J. Geophys. Res., 126, accepted.

Steinbrecht, W., Kubistin, D., Plass-Duelmer, C., et al. (2021), Did the COVID-19 Crisis Reduce Free Tropospheric Ozone across the Northern Hemisphere?, Geophys. Res. Lett., 48, accepted.

 

2020

Choi, S., Lamsal, L.N., Follette-Cook, M et al. (2020), Assessment of NO2 observations during DISCOVER-AQ and KORUS-AQ field campaigns, Atmos. Meas. Tech., 13, 2523-2546.

Kerr, G.H., Waugh, D.W., Steenrod, S.D., Strode, S.A., & Strahan, S.E. (2020), Surface ozone-meteorology relationships: Spatial variations and the role of the jet stream, J. Geophys. Res., 125, 125, e2020JD032735

Nicely, J.M., Duncan, B.N., Hanisco, T.F., Wolfe, G.M., Salawitch, R.J., Deushi, M., Haslerud, A.S., Joeckel, P., Josse, B., Kinnison, D.E. et al. (2020), A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1, Atmos. Chem. Phys., 20, 1341-1361.

Strahan, S.E., Smale, D., Douglass, A.R., et al. (2020), Observed hemispheric asymmetry in stratospheric transport trends from 1994-2018, Geophys. Res. Lett., 47, e2020GL088567.

 

2019

Kerr, G.H., Waugh, D.W., Strode, S.A., Steenrod, S.D., Oman, L.D. and Strahan S.E. (2019), Disentangling the drivers of the summertime ozone-temperature relationship over the United States, J. Geophys. Res., 124, 10,503-10,524.

Kramarova, N., P. A. Newman, E. R. Nash, S. E. Strahan, C. S. Long, B. Johnson, M. Pitts, M. L. Santee, I. Petropavlovskikh, G. O. Braathen, L. Coy, and J. de Laat (2019), Antarctic ozone hole [in “State of the Climate in 2018”]. Bull. Amer. Meteor. Soc., 100 (9), S185-187.

Stauffer, R.M., Thompson, A.M., Oman, L.D. and Strahan, S.E. (2019), The Effects of a 1998 Observing System Change on MERRA-2-Based Ozone Profile Simulations, J. Geophys. Res., 124, 7429–7441.

Strahan, S.E., Douglass, A.R. and Damon, M.R. (2019), Why do Antarctic ozone trends vary?, J. Geophys. Res., 124, 8837–8850.

Yang, H., D.W. Waugh, C. Orbe, G. Zeng, O. Morgenstern, D.E. Kinnison, J.-F, Lamarque, S. Tilmes, D.A. Plummer, P. Joeckel, S.E. Strahan, K.A. Stone, R. Schofield (2019), Large-scale transport into the Arctic: the roles of the midlatitude jet and the Hadley Cell, Atmos. Chem. Phys., 19, 5511-5528.

 

2018

De Mazière, M., A. M. Thompson, M. J. Kurylo, J. Wild, G Bernhard, T. Blumenstock, J. Hannigan, J-C. Lambert, T. Leblanc, T. J. McGee, G. Nedoluha, I. Petropavlovskikh, G. Seckmeyer, P. C. Simon, W. Steinbrecht, S. Strahan, J. T. Sullivan (2018), The Network for the Detection of Atmospheric Composition Change (NDACC): History, status and perspectives, Atmos, Chem. Phys., 18, 4935-4964.

Hall, S.R., Ullmann, K., Prather, M.J., et al. (2018), Cloud impacts on photochemistry: building a climatology of photolysis rates from the Atmospheric Tomography mission, Atmos. Chem. Phys. 18, 16809–16828.

Nicely, J. M., T.P. Canty, M. Manyin, L.D. Oman, R.J. Salawitch, S.D. Steenrod, S.E. Strahan, and S.A. Strode (2018). Changes in global tropospheric OH expected as a result of climate change over the last several decades, J. Geophys. Res. Atmospheres, 123, https://doi.org/10.1029/2018JD028388.

Orbe, C., et al. (2018), Large-Scale Tropospheric Transport in the Chemistry Climate Model Initiative (CCMI) Simulations, Atmos. Chem. Phys, 18, 7217–7235, 18, 7217–7235, 2018, https://doi.org/10.5194/acp-18-7217-2018

Prather, M.J., C.M. Flynn, X. Zhu, S.D. Steenrod, S.A. Strode, A.M. Fiore, G. Correa, L.T. Murray, and J.-F. Lamarque (2018), Chemical modeling of the reactivity of short-lived greenhouse gases: a model inter-comparison prescribing a well-measured, remote troposphere, Atmos. Meas. Tech, 11, https://doi.org/10.5194/amt-2017-470.

Prather, M.M., Flynn, C.M., Zhu, X., et al. (2018), How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition, Atmos. Meas. Tech., 11, 2653–2668, 2018.

Strahan, S.E. and A.R. Douglass (2018), Decline in Antarctic ozone depletion and lower stratospheric chlorine determined from Aura Microwave Limb Sounder observations, Geophys. Res., Lett., 44, doi:10.1002/2017GL074830.

 

2017

Bian, H. et al. (2017), Investigation of Global Particulate Nitrate in the AeroCom Phase III Experiment, Atmos. Chem. Phys., 17, 12911–12940, https://doi.org/10.5194/acp-17-12911-2017.

Brattich, E., H. Liu, L. Tositti, D.B. Considine, and J.H. Crawford (2017), Processes controlling the seasonal variations in 210Pb and 7Be at the Mt. Cimone WMO-GAW global station, Italy: a model analysis, Atmos. Chem. Phys., 17, 1061-1080, doi:10.5194/acp-17-1061-2017.

Chen, G., C. Orbe, and D. Waugh (2017), The role of monsoon-like zonally asymmetric heating in interhemispheric transport, J. Geophys. Res. Atmos., 122, 3282–3298, doi:10.1002/2016JD02642

Choi, H.-D., Liu, H., Crawford, J. H., Considine, D. B., Allen, D. J., Duncan, B. N., Horowitz, L. W., Rodriguez, J. M., Strahan, S. E., Zhang, L., Liu, X., Damon, M. R., and Steenrod, S. D. (2017), Global O3-CO Correlations in a Chemistry and Transport Model during July–August: Evaluation with TES Satellite Observations and Sensitivity to Input Meteorological Data and Emissions, Atmos. Chem. Phys., 17, https://doi.org/10.5194/acp-2016-1079.

Douglass, A.R., S.E. Strahan, L.D. Oman, and R.S. Stolarski (2017), Multi-decadal Records of Stratospheric Composition and their Relationship to Stratospheric Circulation Change, Atmos. Chem. Phys., 17, 12081-12096, https://doi.org/10.5194/acp-17-12081-2017.

Goldberg, D.L., L.N. Lamsal, C.P. Loughner, W.H. Swartz, L. Zifeng, and D.G. Streets (2017), A high-resolution and observationally constrained OMI NO2 satellite retrieval, Atmos. Chem. Phys., 17, 11403–11421, https://doi.org/10.5194/acp-17-11403-2017

Herman, J., R. Evans, A. Cede, N. Abuhassan, I. Petropavlovskikh, G. McConville (2017), Ozone comparion between Pandora #34, Dobson #061, OMI, and OMPS at Boulder Colorado for the period December 2013-December 2016, Atmos. Meas. Tech., 10, 3539-3545, 2017, https://doi.org/10.5194/amt-10-3539-2017.

Krotkov, N. A., L. N. Lamsal, E. A. Celarier, W. H. Swartz, S. V. Marchenko, E. J. Bucsela, K. L. Chan, and M. Wenig (2017), The version 3 OMI NO2 standard product, Atmos. Meas. Phys., 10, 3133–3149, https://doi.org/10.5194/amt-10-3133-2017.  

Lamsal, L.N. et al. (2017), High-resolution NO2 observations from the Airborne Compact Atmospheric Mapper: Retrieval and validation, J. Geophys. Res., 122, 1953-1970, doi:10.1002/2016JD025483.

Liu, J., J.M. Rodriguez, S.D. Steenrod, A.R. Douglass, J.A. Logan, M.A. Olsen, K. Wargan, and J.R. Ziemke (2017), Causes of interannual variability over the southern hemispheric tropospheric ozone maximum, Atmos. Chem. Phys., 17, 3279-3299.

Nicely, J.M., R.J. Salawitch, T. Canty, et al. (2017), Quantifying the causes of differences in tropospheric OH within global models, J. Geophys. Res., 122, doi: 10.1002/2016JD026239.

Orbe, C., L.D. Oman, S.E. Strahan, D.W. Waugh, L.L. Takacs, and S. Pawson (2017), Large-scale atmospheric transport in GEOS Replay simulations, J. Adv. Mod. Earth. Sys., 9, doi:10.1002/2017MS001053.

Orbe, C., D. W. Waugh, H. Yang, J.-F. Lamarque, S. Tilmes, and D. E. Kinnison (2017), Tropospheric transport differences between models using the same large-scale meteorological fields, Geophys. Res. Lett., 44, 1068–1078, doi:10.1002/2016GL071339.

Prather, M.J., X. Zhu, C.M. Flynn, S.A. Strode, J.M. Rodriguez, S.D. Steenrod, J.Liu, J.-F. Lamarque, A.M. Fiore, L.W. Horowitz, J.Mao, L.T. Murray, D.T. Shindell, and .C. Wofsy (2017), Global atmospheric chemistry – which air matters, Atmos. Chem. Phys., 17, 9081-9102, https://doi.org/10.5194/acp-17-9081-2017.

Sand, M. , et al. (2017), Aerosols at the Poles: An AeroCom Phase II multi-model evaluation, Atoms. Chem. Phys., 17, 12197-12218, https://doi.org/10.5194/acp-17-12197-2017.

 

2016

Alvarado, M.J., C.R. Lonsdale, H.L. Macintyre, et al. (2016), Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008, Atmos. Chem. Phys., 16, 9435-9455.

Flynn, C.M., K.E. Pickering, J.H. Crawford, A.J. Weinheimer, G. Diskin, K.L. Thornhill, C. Loughner, P. Lee, and S.A. Strode (2016), Variability of O3 and NO2 profile shapes during DISCOVER-AQ: Implications for satellite observations and comparisons to model-simulated profiles, Atmos. Environ., 147, 133-156.

Huang, L., J. Jiang, L.T. Murray, et al. (2016), Evaluation of UTLS carbon monoxide simulations in GMI and GEOS-Chem chemical transport models using Aura MLS observations,  Atmos. Chem. Phys., 16, 5641-5663.

Koffi, B., M. Schulz, F.-M. Breon (2016), Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results, J. Geophys. Res., 121, 7254-7283.

Krotkov, N. A., C. A. McLinden, C. Li, L. N. Lamsal, E. A. Celarier, S. V. Marchenko, W. H. Swartz, E. J. Bucsela, J. Joiner, B. N. Duncan, K. F. Boersma, J. P. Veefkind, P. F. Levelt, V. E. Fioletov, R. R. Dickerson, H. He, Z. Lu, and D. G. Streets (2016), Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015, Atmos. Chem. Phys., 16, 4605–4629, doi:10.5194/acp-16-4605-2016.

Liu. H., D.B. Considine, L.W. Horowitz (2016), Using beryllium-7 to assess cross-tropopause transport in global models, Atmos. Chem. Phys., 16, 4641-4659.

Liu, J., J.M. Rodriguez, A.M. Thompson, et al. (2016), Origins of tropospheric ozone interannual variation over Reunion: A model investigation, J. Geophys. Res, 121, 521-537.

Nicely, J.M., D.C. Anderson, T.P. Canty et al. (2016), An observationally constrained evaluation of the oxidative capacity in the tropical western Pacific troposphere, J. Geophys. Res., 121, 7461-7488.

Orbe, C., D.W. Waugh, P.A. Newman (2016), The Transit-Time Distribution from the Northern Hemisphere Midlatitude Surface, J. Atmos. Sci, 73, 3785-3802. 

Strahan, S.E., A.R. Douglass, S.D. Steenrod (2016) Chemical and dynamical impacts of stratospheric sudden warmings on Arctic ozone variability, J. Geophys. Res., 19, 11836-11851.

Strode, S.A., H.M. Worden, M. Damon, et al. (2016), Interpreting space-based trends in carbon monoxide with multiple models, Atmos. Chem. Phys., 16, 7285-7294.

 

2015

Arnold, S.R., L.K. Emmons, S.A. Monks, et al. (2015), Biomass burning influence on high-latitude tropospheric ozone and reactive nitrogen in summer 2008: a multi-model analysis based on POLMIP simulations, Atmos. Chem. Phys., 15, 6047-6068, doi: 10.5194/acp-15-6047-2015.

Emmons, L.K.,S.R. Arnold, S.A. Monks, et al. (2015), The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations, Atmos. Chem. Phys, 15, 6721-6744, doi: 10.5194/acp-15-6721-2015

Huang, J., H. Liu, J.H. Crawford, et al. (2015), Origin of springtime ozone enhancements in the lower troposphere over Beijing: in situ measurements and model analysis, Atmos. Chem. Phys., 15, 5161-5179.

Kuai, L, J. Worden, E. Campbell, S. Kulawik, M. Lee, R.Weidner, K. Li, S. Montzka, F. Moore, J. Berry, I. Baker, S. Dennin, H. Bian, K. Bowman, J. Liu, Y. Yung (2015): Estimate of Carbonyl Sulfide Tropical Oceanic Surface Fluxes Using Aura Tropospheric Emission Spectrometer Observations, 120, 11012-22023, DOI: 10.1002/2015JD023493.

Lacagnina, C., Hasekamp, O., Bian, H., Curci, G., Myhre, G., van Noije, T., et al. (2015). Aerosol single-scattering albedo over the global oceans: Comparing PARASOL retrievals with AERONET, OMI, and AeroCom models estimates. Journal of Geophysical Research: Atmospheres, 120, 9814-9836. doi:10.1002/2015JD023501.

Marchenko, S., N. A. Krotkov L. N. Lamsal, E. A. Celarier, W. H. Swartz, and E. J. Bucsela (2015), Revising the slant column density retrieval of nitrogen dioxide observed by the Ozone Monitoring Instrument, J. Geophys. Res. Atmos., 120, 5670–5692, doi:10.1002/2014JD022913.

Monks., S.A., S.R. Arnold, L.K. Emmons, et al. (2015), Multi-model study of chemical and physical controls on transport of anthropogenic and biomass burning pollution to the Arctic, Atmos. Chem. Phys., 15, 3575-3603.

Prather, M.J., J. Hsu, N.M. DeLuca, et al. (2015), Measuring and modeling the lifetime of nitrous oxide including its variability, J. Geophys. Res., 120, 5693-5705.  

Strode, S.A., J.M. Rodriguez, J.A. Logan, et al. (2015), Trends and variability in surface ozone over the United States, J. Geophys. Res., 120, 9020-9042.   

Wargan, K., S. Pawson, M.A. Olsen, J.C. Witte, A.R. Douglass, J.R. Ziemke, S.E. Strahan, and J.E. Nielsen (2015), The global structure of upper troposphere-lower stratosphere ozone in GEOS-5: A multiyear assimilation of EOS Aura data, J. Geophys. Res., 120, 2013-2036.

Ziemke, J.R., A.R. Douglass, L.D. Oman, S.E. Strahan, and B.N. Duncan (2015), Tropospheric ozone variability in the tropics from ENSO to MJO and shorter timescales, Atmos. Chem. Phys., 15, 8037-8049.   

 

2014

Anenberg, S. C., J Jason, H. Yu, M. Chin, M. Schulz, D. Bergmann, I. Bey, H. Bian, T. Diehl, A. Fiore, et al. (2014), Impacts of intercontinental transport of anthropogenic fine particulate matter on human mortality, Air Qual. Atmos. Health, Doi:10.1007/s11869-014-024809.

Choi, S., J. Joiner, Y. Choi, et al. (2014), First estimates of global free-tropospheric NO2 abundances derived using a cloud-slicing technique applied to satellite observations from the Aura Ozone Monitoring Instrument (OMI), Atmos. Chem. Phys., 14, 10565-10588.

Eastham, S.D., D.K. Weisenstein, and S.R.H. Barrett (2014), Development and evaluation of the unified tropospheric-stratospheric chemistry extension (UCX) for the global chemistry-transport model GEOS-Chem, Atmos. Environ., 89, 52-63.

Jackman, C.H., C.E. Randall, V.L. Harvey (2014), Middle atmospheric changes caused by the January and March 2012 solar proton events, Atmos. Chem. Phys., 14, 1025-1038.

Jiao, C., M.G. Flanner, Y. Balkanski, et al. (2014), An AeroCom assessment of black carbon in Arctic snow and sea ice, Atmos. Chem. Phys., 14, 2399-2417.

Lamsal, L.N., N.A. Krotkov, E.A. Celarier, et al. (2014), Evaluation of OMI operational standard NO2 column retrievals using in situ and surface-based NO2 observations, Atmos. Chem. Phys., 14, 11587-11609.

Samset, B. H., et al. (2014), Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations, Atmos. Chem. Phys., 14, 12465-12477, doi:10.5194/acp-14-12465-2014.

Strahan, S.E., A.R. Douglass, P.A. Newman, and S.D. Steenrod (2014), Inorganic chlorine variability in the Antarctic vortex and implications for ozone recovery, J. Geophys. Res., 119, 14098-14109.

Tsigaridis, K., N. Daskalakis, M. Kanakidou, et al. (2014), The AeroCom evaluation and intercomparison of organic aerosol in global models,  Atmos. Chem. Phys., 14, 10845-10895.

Ziemke, J.R., M.A. Olsen, J.C. Witte et al. (2014), Assessment and applications of NASA ozone data products derived from Aura OMI/MLS satellite measurements in context of the GMI chemical transport model, J. Geophys. Res., 119, 5671-5699.

 

2013

Adams, C., K. Strong, X. Zhao, et al. (2013), The spring 2011 final stratospheric warming above Eureka: anomalous dynamics and chemistry, Atmos. Chem. Phys., 13, 611-624.

Allen, D.R., A.R. Douglass, and S.E. Strahan (2013), The large-scale frozen-in anticyclone in the 2011 Arctic summer stratosphere, J. Geophys. Res., 118, 2656-2672.

Bian, H., P.R. Colarco, M. Chin, et al. (2013), Source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign, Atmos. Chem. Phys., 13, 4707-4721.

Bucsela, E.J., N.A. Krotkov, E.A. Celarier, et al. (2013), A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: applications to OMI, Atmos. Meas. Tech., 6, 2607–2626.

Moore, R.H., V.A. Karydis, S.L. Capps, et al. (2013), Droplet number uncertainties associated with CCN: an assessment using observations and a global model adjoint, Atmos. Chem. Phys., 13, 4235-4251.

Myhre, G., et al. (2013), Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853-1877, doi:10.5194/acp-13-1853-2013.

Strahan, S.E., A.R. Douglass, and P.A. Newman (2013), The contributions of chemistry and transport to low arctic ozone in March 2011 derived from Aura MLS observations, J. Geophys. Res. 118, 1563-1576.

Waugh, D.W., A.M. Crotwell, E.J. Dlugokencky, et al. (2013), Tropospheric SF6: Age of air from the Northern Hemisphere midlatitude surface, J. Geophys. Res., 118, 11429-11441.

Whaley, C. K. Strong, C. Adams, et al. (2013), Using FTIR measurements of stratospheric composition to identify midlatitude polar vortex intrusions over Toronto, J. Geophys. Res., 118, 12766-12783.

Yu, H., M. Chin, J. West, C. S. Atherton, N. Bellouin, I. Bey, D. Bergmann, H. Bian, T. Diehl, G. Forberth, P. Hess, M. Schulz, D. Shindell, T. Takemura, and Q. Tan (2013), A multi-model assessment of the influence of regional anthropogenic emission reductions on aerosol direct radiative forcing and the role of intercontinental transport, J. Geophys. Res., 118, doi:10.1029/2012JD018148.  

 

2012 

Fry, M.M., V. Naik, J.J. West, et al. (2012), The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing, J. Geophys. Res., 117, doi:10.1029/2011JD017134.

Wild, O., A.M. Fiore, D.T. Shindell, et al. (2012), Modelling future changes in surface ozone: a parameterized approach, Atmos. Chem. Phys., 12, 2037-2054.

Yu, H. L.A. Remer, M. Chin, H. Bian, Q. Tan, T. Yuan, and Y. Zhang (2012), Aerosols from Overseas Rival Domestic Emissions over North America, Science, 337, 566-569.

Yuan, T. L.A. Remer, Bian, H., et al. (2012), Aerosol indirect effect on tropospheric ozone via lightning, J. Geophys. Res., 117, doi:10.1029/2012JD017723.

 

2011

Allen, D.R., A.R. Douglass, G.L. Manney, S.E. Strahan, J.C. Krosschell, J.V. Trueblood, J.E. Nielsen, S. Pawson, and Z. Zhu (2011), Modeling the frozen-in anticyclone in the 2005 Arctic summer stratosphere, Atmos. Chem. Phys., 11, 4557-4576.

Barahona, D., R. Sotiropoulou, and A. Nenes (2011), Global distribution of cloud droplet number concentration, autoconversion rate, and aerosol indirect effect under diabatic droplet activation, J. Geophys. Res., 116, doi: 10.1029/2010JD015274.

Liang, Q., J.M. Rodriguez, A.R. Douglass, et al. (2011), Reactive nitrogen, ozone and ozone production in the Arctic troposphere and the impact of stratosphere-troposphere exchange, Atmos. Chem. Phys., 11, 13181–13199.

 

2010

Allen, D., K. Pickering, B. Duncan, and M. Damon (2010), Impact of lightning-NO emissions on North American photochemistry as determined using the GMI model, J. Geophys. Res., in press.

Barahona, D., J. Rodriguez, and A. Nenes (2010), Sensitivity of the Global Distribution of Cirrus Ice Crystal Concentration to Heterogeneous Freezing, J. Geophys. Res., 115, doi:10.1029/2010JD014273.

Bian, H., M. Chin, S.R. Kawa, H. Yu, T. Diehl, and T. Kucsera (2010), Multiscale carbon monoxide and aerosol correlations from satellite measurements and the GOCART model: Implication for emissions and atmospheric evolution, J. Geophys. Res., 115, doi:10.1029/2009JD012781.

Duncan, B.N., Y. Yoshida, J.R. Olson, et al. (2010), Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation,  Atmo. Environ., 44, 2213-2223.

Jonson, J.E., A. Stohl, A.M. Fiore, et al. (2010), A multi-model analysis of vertical ozone profiles, Atmos. Chem. Phys, 10, 5759-5783.

 

2009

Anenberg, S.C., et al. (2009), Intercontinental impacts of ozone pollution on human mortality, ES&T, 43, 6482-6487.

Barahona, D., and Nenes, A. (2009), Parameterizing the competition between homogeneous and heterogeneous freezing in cirrus cloud formation. Monodisperse ice nuclei, Atmos. Chem. Phys., 9, 369-381.

Bian, H., M. Chin, J. Rodriguez, H. Yu, J. E. Penner, and S. Strahan (2009), Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity, Atmos. Chem. Phys., 9, 2375-2386.

Chandra, S., J. R. Ziemke, B. N. Duncan, T. L. Diehl, N. Livesey, and L. Froidevaux (2009), Effects of the 2006 El Nino on tropospheric ozone and carbon monoxide: Implications for dynamics and biomass burning, Atmos. Chem. Phys., 9, 4239-4249.

Fiore, A., et al. (2009), Multi-model estimates of intercontinental source-receptor relationships for ozone pollution, J. Geophys. Res., 114, D04301, doi:10.1029/2008JD010816.

Hsieh, W.C., Nenes, A., Flagan, R.C., Seinfeld, J.H., Buzorius, G., and Jonsson, H. (2009), Parameterization of cloud droplet size distributions: comparison with parcel models and observations, J. Geophys. Res., 114, D11205, doi:10.1029/2008JD011387, 2009.

Hsu, J. and M. J. Prather (2009), Stratospheric variability and tropospheric ozone, J. Geophys. Res., 114, D06102, doi:10.1029/2008JD010942.

Kumar, P., Sokolik, I.N., and Nenes, A. (2009), Parameterization of cloud droplet formation for global and regional models: Including adsorption activation from insoluble CCN., Atmos. Chem. Phys., 9, 2517-2532.

Liang, Q., A. R. Douglass, B. N. Duncan, R. S. Stolarski, and J. C. Witte (2009), The governing processes and timescales of stratosphere-to-troposphere transport and its contribution to ozone in the Arctic troposphere, Atmos. Chem. Phys., 9, 3011-3025.

Liu, H., et al. (2009), Sensitivity of photolysis frequencies and key tropospheric oxidants in a global model to cloud vertical distributions and optical properties, J. Geophys. Res., 114, D10, D10305.

Prather, M. J. (2009), Tropospheric O3 from photolysis of O2, Geophys. Res. Lett., 36, L03811, doi:10.1029/2008GL036851.

Reidmiller, D., et al. (2009), The influence of foreign vs. North American emissions on surface ozone in the U.S., Atmos. Chem. Phys., 9, 5027-5042.

Strahan, S.E., M.R. Schoeberl, and S.D. Steenrod (2009), The impact of tropical recirculation on polar composition, Atmos. Chem. Phys., 9, 2471-2480.

Wu, S., B.N. Duncan, D.J. Jacob, A.M. Fiore and O. Wild (2009), Chemical nonlinearities in relating intercontinental ozone pollution to anthropogenic emissions, Geophys. Res. Lett., 36, L05806.

Yu, H., M. Chin, L. A. Remer, R. G. Kleidman, N. Bellouin, H. Bian, and T. Diehl (2009), Variability of Maritime Aerosol Fine-mode Fraction and Estimates of Anthropogenic Aerosol Component Over Cloud-free Oceans from MODIS. J. Geophys. Res., 114, D10206, doi: 10.1029/2008JD010648.

Ziemke, J. R., S. Chandra, B. N. Duncan, M. R. Schoeberl, M. R. Damon, O. Torres, and P. K. Bhartia (2009), Recent biomass burning events in the tropics and elevated concentrations of tropospheric ozone, Geophys.  Res. Lett., 36, L15819, doi:10.1029/2009GL039303.

 

2008

Barahona, D. and Nenes, A. (2008), Parameterization of cirrus cloud formation in large scale models: Homogeneous nucleation, J.Geoph.Res., 113, D11211, doi:10.1029/2007JD009355.

Considine, D.B., J.A. Logan, and M.A. Olsen (2008), Evaluation of near-tropopause ozone distributions in the GMI combine stratosphere/troposphere model with ozonesonde data, Atmos. Chem. Phys., 8, 2365-2385.

Douglass, A.R., R. S. Stolarski, M. R. Schoeberl, C. H. Jackman, M. L. Gupta, P. A. Newman, J. E. Nielsen, and E. L. Fleming (2008), Relationship of loss, mean age of air and the distribution of CFCs to stratospheric circulation and implications for atmospheric lifetimes,  J. Geophys. Res., 113, D14309, doi:10.1029/2007JD009575.

Duncan, B. N., West, J. J., Yoshida, Y., Fiore, A. M., and Ziemke, J. R. (2008), The influence of European pollution on ozone in the Near East and northern Africa, Atmos. Chem. Phys., 8, 2267-2283.

Neu, J. L., M. J. Lawler, M. J. Prather, and E. S. Saltzman (2008), Oceanic alkyl nitrates as a natural source of tropospheric ozone, Geophys. Res. Lett., 35, L13814, doi:10.1029/
2008GL034189.

Olsen, M. A., A. R. Douglass, P. A. Newman, J. C. Gille, B. Nardi, V. A. Yudin, D. E. Kinnison, and R. Khosravi (2008), HIRDLS observations and simulation of a lower stratospheric intrusion of tropical air to high latitudes,Geophys. Res. Lett., 35, L21813, doi:10.1029/2008GL035514.

Prather, M. J., and J. Hsu (2008), NF3, the greenhouse gas missing from Kyoto, Geophys. Res. Lett., 35, L12810, doi:10.1029/2008GL034542.

Prather M.J., X. Zhu, S.E. Strahan, S.D. Steenrod, and J.M. Rodriguez (2008), Quantifying errors in trace species transport modeling, Proc. Nat. Acad. Sci. 105(50): 19617-19621.

Sanderson, M.G., et al. (2008), A multi-model study of the hemispheric transport and deposition of oxidised nitrogen,Geophys. Res. Lett., 35, L17815, doi:10.1029/2008GL035389.

Schoeberl, M.R., A. R. Douglass, R. S. Stolarski, S. Pawson, S. Strahan, and W. Read (2008), Comparison of lower stratospheric tropical mean vertical velocities, J. Geophys. Res., 113, D24109, doi:10.1029/2008JD010221.

Shindell, D., J. M. Chin, F. Dentener, G. Faluvgi, A. Fiore, M. G. Schultz, M. Schulz, H. Teich, O. Wild, D. J. Bergmann, H. Bian, K. Cuvelier, R. M. Doherty, B. N. Duncan, P. Hess, L. W. Horowitz, R. HU, J. W. Kaminski, E. Marmer, K. J. Pringle, S. Schroeder, S. Szopa, M. G. Sanderson, T. J. Keating, and A. Zuber (2008), A multi-model assessment of pollution transport to the Arctic, Atmos. Chem. Phys., 8, 5353-5372.

Yu, H., L. A. Remer, M. Chin, H., Bian, R. G. Kleidman, and T. Diehl (2008), A satellite-based assessment of trans-pacific transport of pollution. J. Geophys. Res., Vol. 113, D14S12, doi:10.1029/2007JD009349.

 

2007

Barahona, D. and Nenes, A. (2007), Parameterization of cloud droplet formation in large scale models: Including effects of entrainment, J.Geoph.Res., 112, D16206, doi:10.1029/2007JD008473.

Duncan, B.N., S.E. Strahan, Y. Yoshida, S.D. Steenrod, and N. Livesey (2007), Model study of the cross-tropopause transport of biomass burning pollution, Atmos. Chem. Phys., 7, 3713-3736.

Eyring, V., D. S. Stevenson, A. Lauer, et al. (2007), Multi-model simulations of the impact of international shipping on atmospheric chemistry and climate in 2000 and 2030, Atmos. Chem. Phys., 7, 757-780.

Liu, X., J.E. Penner, B. Das, D. Bergmann, J.M. Rodriguez, S. Strahan, M. Wang, and Y. Feng (2007), Uncertainties in global aerosol simulations: Assessment using three meteorological data sets, J. Geophys. Res., 112, D11212, doi:10.1029/2006JD008216.

Neu, J.L., M.J. Prather, and J.E. Penner (2007), Global atmospheric chemistry: integrating over fractional cloud cover, J. Geophys. Res., 112, D11306.

Prather, M.J. (2007), Lifetimes and time-scales in atmospheric chemistry, Phil. Trans. R. Soc., A 365: 1705–1726.

Schoeberl. M.R., J.R. Ziemke, B. Bojkov, et al. (2007), A trajectory-based estimate of the tropospheric ozone column using the residual method, J. Geophys. Res., 112, D24S49, doi:10.1029/2007JD008773.

Strahan, S.E., B.N. Duncan, and P. Hoor (2007), Observationally derived transport diagnostics for the lowermost stratosphere and their application to the GMI chemistry transport model, Atmos. Chem. Phys., 7, 2435-2445.

Waugh, D.W., S. E. Strahan, and P. A. Newman (2007), Sensitivity of stratospheric inorganic chlorine to differences in transport, Atmos. Chem. Phys., 7, 4935-4941.

Weisenstein, D.K., J.E. Penner, M. Herzog, and X. Liu (2007), Global 2-D intercomparison of sectional and modal aerosol modules, Atmos. Chem. Phys., 7, 2339-2355.

 

2006

Bortz, S.E., M. J. Prather, J.-P. Cammas, V. Thouret, and H. Smit (2006), Ozone, water vapor, and temperature in the upper tropical troposphere: Variations over a decade of MOZAIC measurements, J. Geophys. Res., 111, D05305, doi:10.1029/2005JD006512.

Dentener, F., D. Stevenson, K. Ellingsen, et al. (2006), The global atmospheric environment for the next generation, Environ. Sci. Technol., 40, 3586-3594.

Dentener, F., Drevet, J., Lamarque, J.F., et al. (2006), Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation, Glob. Biogeochem. Cyc., 20, GB4003.

Douglass, A.R., R.S. Stolarski, S.E. Strahan, B.C. Polansky (2006), Sensitivity of Arctic ozone loss to polar stratospheric cloud volume and chlorine and bromine loading in a chemistry and transport model, Geophys. Res. Lett., 33, L17809, doi:10.10.29/2006GL026492.

Meskhidze, N., and A. Nenes (2006), Phytoplankton and Cloudiness in the Southern Ocean, Science, 314, 1419-1423.

Schoeberl, M.R., B.N. Duncan, A.R. Douglass, J. Waters, N. Livesey, W. Read, and M. Filipiak (2006), The carbon monoxide tape recorder, Geophys. Res. Lett., 33(12), L12811.

Shindell, D.T., G. Faluvegi, D.S. Stevenson, et al. (2006), Multimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes, J. Geophys. Res., 111, D19306, doi:10.1029/2006JD007100.

Stevenson, D.S., F.J. Dentener, M.G. Schultz, et al. (2006), Multi-model ensemble simulations of present-day and near-future tropospheric ozone, J. Geophys. Res., 111, D08301, doi:10.1029/2005JD006338.

Strahan, S.E. and B.C. Polansky (2006), Meteorological implementation issues in chemistry and transport models, Atmos. Chem. Phys., 6, 2895-2910.

Van Noije, T.P.C., H.J. Eskes, F.J. Dentener, et al. (2006), Multi-model ensemble simulations of tropospheric NO2 compared with GOME retrievals for the year 2000, Atmos. Chem. Phys., 6, 2943-2979.

Wild, O., and M.J. Prather (2006), Global tropospheric ozone modeling: Quantifying errors due to grid resolution, J. Geophys. Res., 111, D11305, doi:10.1029/2005JD006605.

Ziemke, J.R., S. Chandra, B.N. Duncan, L. Froidevaux, P.K. Bhartia, P.F. Levelt, and J.W. Waters (2006), Tropospheric ozone determine from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative’s chemistry transport model, J. Geophys. Res., 111 (D19), D19303.

 

2001-2005

Bian, H., M. J. Prather, and T. Takemura (2003), Tropospheric aerosol impacts on trace gas budgets through photolysis, J. Geophys. Res., 108, 4242, doi:10.1029/2002JD002743.

Considine, D.B., D.J. Bergmann, and H. Liu (2005), Sensitivity of Global Modeling Initiative chemistry and transport model simulations of radon-222 and lead-210 to input meteorological data, Atmos. Chem. Phys., 5, 3389-3406.

Considine, D.B., P.S. Connell, D.J. Bergmann, D.A. Rotman, and S.E. Strahan (2004), Sensitivity of Global Modeling Initiative model predictions of Antarctic ozone recovery to input meteorological fields, J. Geophys. Res., 109, D15301, doi:10.1029/2003JD004487. 

Douglass, A.R., P.S. Connell, R.S. Stolarski, and S.E. Strahan (2004), Radicals and reservoirs in the GMI chemistry and transport model: comparison to measurements, J. Geophys. Res., 109, D16302, doi:10.1029/2004JD004632.

Fountoukis, C. and A. Nenes (2005), Continued development of a cloud droplet formation parameterization for global climate models, J.Geoph.Res.,110, D11212, doi:10.1029/2004JD005591.

Kinnison, D.E., P. S. Connell, J. M. Rodriguez, D. A. Rotman, D. B. Considine, J. Tannahill, R. Ramaroson, P. J. Rasch, A. R. Douglass, S. L. Baughcum, L. Coy, D. W. Waugh, S. R. Kawa, and M. J. Prather (2001), The Global Modeling Initiative Assessment Model: Application to High-Speed Civil Transport Perturbation, J. Geophys. Res., 106, 1693-1711.

Meskhidze, N., A. Nenes, W.C. Conant, and J.H. Seinfeld (2005), Evaluation of a new Cloud Droplet Activation Parameterization with In Situ Data from CRYSTAL-FACE and CSTRIPE, J.Geoph.Res., 110, D16202, doi:10.1029/2004JD005703.

Pak, B. C., et al. (2003), Measurements of biomass burning influences in the troposphere over southeast Australia during the SAFARI 2000 dry season campaign, J. Geophys. Res., 108(D13), 8480, doi:10.1029/2002JD002343.

Pak, B.C., and M.J. Prather (2001), CO2 source inversions using satellite observations of the upper troposphere, Geophys. Res. Lett., 28, 4571-4574.

Rotman, D.A., C.S. Atherton, D.J. Bergmann, et al. (2004), IMPACT: the LLNL 3-D global atmospheric chemical transport model for the combined troposphere and stratosphere: Model description and analysis of ozone and other trace gases, J. Geophys. Res., 109, doi:10.1029/2002JD003155.

Rotman, D.A.,  J.R. Tannahill, D.E. Kinnison, P.S. Connell, D. Bergmann, D. Proctor, J.M. Rodriguez, S.J. Lin, R.B. Rood, M.J. Prather, P.J. Rasch, D.B. Considine, R. Ramaroson, S.R. Kawa (2001), The Global Modeling Initiative assessment model: Model description, integration and testing of the transport shell, J. Geophys. Res., 106, 1669-1691.

Strahan, S.E., and A.R. Douglass (2004), Evaluating the credibility of transport processes in simulations of ozone recovery using the Global Modeling Initiative three-dimensional model, J. Geophys. Res., 109, D05110, doi:10.1029/2003JD004238.

 

 

1996-2000

Considine, D.B., A.R. Douglass, P.S. Connell, D.E. Kinnison and D.A. Rotman (2000), A polar stratospheric cloud parameterization for the three-dimensional model of the global modeling initiative and its response to stratospheric aircraft emissions.  J. Geophys. Res., 105, 3955-3975.

Douglass, A.R., M.J. Prather, T.M. Hall, S.E. Strahan, P.J. Rasch, L.C. Sparling, L. Coy, and J.M. Rodriguez (1999), Choosing meteorological input for the global modeling initiative assessment of high-speed aircraft, J. Geophys. Res., 104, 27,545-27,564.

McLinden, C., S. Olsen, B. Hannegan, O. Wild, M. Prather, and J. Sundet (2000), Stratospheric ozone in 3-D models: a simple chemistry and the cross-tropopause flux, J. Geophys. Res., 105, 14653-14665.

Olsen, S.C., B. J. Hannegan, X. Zhu, and M.J. Prather (2000), Evaluating ozone depletion from very short-lived halocarbons, Geophys. Res. Lett., 27, 1475-1478.

Rasch, P.J., J. Feichter, K. Law, et al. (2000), A comparison of scavenging and deposition processes in global models: results from the WCRP Cambridge Workshop of 1995, Tellus (B), 52:1025-1056.

Rodriguez, J.M. and D. Kinnison (1999), “Model evaluation and results”. Chapter 4 in Assessment of High-Speed Research Aircraft:1998, R. Kawa, editor, NASA TP-1999-209236.

Rodriguez, J.M. (1996), Global Modeling Initiative, Chapter 6 in “Atmospheric Effects of Aviation: First Report of the Subsonic Assessment Project.”  A. M. Thompson, R.R. Friedl and H.L. Wesoky, eds.  NASA Reference Publication 1385.

Spivakovsky, C.M., J.A. Logan, S.A. Montzka, Y.J. Balkanski, M. Foreman-Fowler, D.B.A. Jones, L.W. Horowitz, A.C. Fusco, C.A.M. Brenninkmeijer, M.J. Prather, S.C. Wofsy, and M.B. McElroy (2000), Three-dimensional climatological distribution of tropospheric OH: update and evaluation, J. Geophys. Res., 105, 8931-8980.

Wild, O., and M.J. Prather (2000), Excitation of the primary tropospheric chemical mode in a global three-dimensional model, J. Geophys. Res., 105, 24647-24660.

Wild, O., X. Zhu, and M.J. Prather (2000), Fast-J: Accurate simulation of in- and below-cloud photolysis in tropospheric chemical models, J. Atmos. Chem., 37, 245-282.