Skip to main content

ACD

Atmospheric Chemistry

Using a combination of satellite data, atmospheric models, and in situ observations, the Atmospheric Chemistry and Dynamics Laboratory strives to understand the factors that control stratospheric ozone and trace gases that influence ozone, the anthropogenic and natural processes that control the composition of Earth's tropospheric trace gases and aerosols, and the impact of climate change on future composition.

Other Resources

 

Space Missions

aqua
Launch

Aqua, Latin for water, is a NASA Earth Science satellite mission named for the large amount of information that the mission is collecting about the Earth's water cycle, including evaporation from the oceans, water vapor in the atmosphere, clouds, precipitation, soil moisture, sea ice, land ice, and snow cover on the land and ice.

aura

Aura (Latin for breeze) was launched July 15, 2004. Aura is part of the Earth Science Projects Division, a program dedicated to monitoring the complex interactions that affect the globe using NASA satellites and data systems. Aura's four instruments study the atmosphere's chemistry and dynamics. The satellite's measurements will enable scientists to investigate questions about ozone trends, air quality changes, and their linkage to climate change.

Field Campaigns

March 2022

In September 2021, NASA will deploy assets to the Houston, Texas region to measure air quality relevant constituents at high spatial and temporal resolutions. This effort will be conducted in partnership with the Texas Commission on Environmental Quality, the Department of Energy (DOE)-led Tracking Aerosol Convection interactions ExpeRiment (TRACER) campaign, and a number of academic collaborators.

March 2022

Fire emissions in the US are approximately half from Northwestern wildfires and half from prescribed fires that burn mostly in the Southeast US. Wildfires burn slightly more fuel and therefore have overall larger emissions, but prescribed fires dominate the area burned and the number of fires.

Instruments

The primary scientific objective is to provide time/height ozone measurements from near the surface to the top of the troposphere to describe in high-fidelity their spatio-temporal distribution. These high-fidelity measurements provide the GEO-CAPE science team with accurate representations of the PBL and FT ozone structure as proxies for the high time resolved observations from a geosynchronous satellite.

Organizations:

A portable ground instrument for measuring CO2 and CH4 in the Earth's atmospheric column.

Organizations: