Skip to main content

LHR Publications

 

  1. A portable miniaturized laser heterodyne radiometer (mini-LHR) for remote measurements of column CH4 and CO2, E. L. Wilson, A. J. DiGregorio, G. Villanueva, C. E. Grunberg, Z. Souders, K. M. Miletti, A. Menendez, M. H. Grunberg, M. A. M. Floyd, J. E. Bleacher, E. S. Euskirchen, C. Edgar, B. J. Caldwell, B. Shiro, K. Binsted. Applied Physics B 125, Article number: 211 (2019). DOI: 10.1007/s00340-019-7315-8
  2. Potential improvements in global carbon flux estimates from a network of laser heterodyne radiometer measurements of column carbon dioxide. Palmer, P. I., Wilson, E. L., Villanueva, G. L., Liuzzi, G., Feng, L., DiGregorio, A.J., Mao, J.-P., Ott, L. E., Duncan, B. Atmos. Meas. Tech. 12, 2579-2594 (2019) https://doi.org/10.5194/amt-12-2579-2019.
  3. A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing CubeSat. Wilson, E. L., DiGregorio, A. J., Riot, J. R., Ammons, M. S., Bruner, W. W., Carter, D., Mao, J., Ramanathan, A., Strahan, S. E., Oman, L. D., Hoffman, C., Garner, R. M. Meas. Sci. Technol. 28, 035902 (8pp) (2017). http://dx.doi.org/10.1088/1361-6501/aa5440
  4. Autonomous field measurements of CO2 in the atmospheric column with the miniaturized laser heterodyne radiometer. Melroy, H.R., Wilson, E.L., Clarke, G.B., Ott, L.E., Mao, J., Ramanathan, A.K., McLinden, M.L. Applied Physics B: Lasers & Optics 120, 609-615 (2015). https://doi.org/10.1007/s00340-015-6172-3
  5. On the detectability of trace chemical species in the martian atmosphere using gas correlation filter radiometry. Sinclair, J. A., Irwin, P. G. J., Calcutt, S. B. Calcutt, Wilson, E. L.  ICARUS 260, 103-127 (2015). https://doi.org/10.1016/j.icarus.2015.07.005
  6. Miniaturized Laser Heterodyne Radiometer for Measurements of CO2 in the Atmospheric Column. Wilson, E. L., McLinden, M. L., Miller, J. H., Allen, G. R., Ott, L.E., Melroy, H. R., Clarke, G. B. Applied Physics B: Lasers & Optics114, 385-393 (2014). https://doi.org/10.1007/s00340-013-5531-1
  7. Uncertainty analysis for the miniaturized laser heterodyne radiometer (mini-LHR). Clarke, G. B., Wilson, E. L., Miller, J. H. & Melroy, H. R. Meas. Sci. Technol. 25, 055204-055209 (2014). http://dx.doi.org/10.1088/0957-0233/25/5/055204
  8. A Hollow-Waveguide Gas Correlation Radiometer for ultra-precise column measurements of formaldehyde on Mars, Wilson, E. L., Neveu, M., Riris, H. Georgieva, E. M., Heaps, W. S. Meas. Sci. Technol., 22, 085902 (2011). http://dx.doi.org/10.1088/0957-0233/22/8/085902
  9. Development of a Fabry-Perot Interferometer for Ultra-Precise Measurements of Column CO2. E. L. Wilson, E. M. Georgieva, and W. S. Heaps, Meas. Sci. Technol. 18, 1495-1502 (2007). http://dx.doi.org/10.1088/0957-0233/18/5/040
  10. Precision Measurement of Atmospheric Trace Constituents Using a Compact Fabry-Perot Radiometer. W.S. Heaps, E.L. Wilson, E.M. Georgieva, Intl Journal of High Speed Electronics and Systems, 18 (3) 601-612 (2008).https://doi.org/10.1142/S0129156408005606
  11. Differential Radiometers Using Fabry Perot Interferometric Technique for Remote Sensing of Greenhouse Gases. Georgieva, E. M., Heaps, W. S., Wilson, E. L., IEEE Transactions on Geoscience and Remote Sensing, vol. 46, issue 10, pp. 3115-3122 (2008) DOI: 10.1109/TGRS.2008.921570
  12. Laser Sounder for Global Measurement of CO2 Concentrations in the Troposphere from Space.  Abshire, J. B., Riris, H., Allan, G., Sun, X., Kawa, R., Mao, J.-P., Stephen, M., Wilson, E., Krainak, M. A.  Laser Applications to Chemical, Security and Environmental Analysis. LMA4 (2008).   https://doi.org/10.1364/LACSEA.2008.LMA4
  13. Total Column Oxygen Detection Using Fabry-Perot Interferometer. E. Georgieva, E. Wilson, M. Miodek, W. Heaps. Optical Engineering 45 (11) 115001 (2006).  https://doi.org/10.1117/1.2387878
  14. Experimental data on O-2 absorption using Fabry-Perot based optical setup for remote sensing atmospheric observationsE. Georgieva, E. Wilson, M. Miodek, W. Heaps. P. Soc. Photo-Opt Ins. 5542: 195-206 (2004). https://doi.org/10.1117/12.559891
  15. Measurements of Hydrogen Cyanide and its Chemical Production Rate in a Laminar Methane/Air, Non-Premixed Flame Using cw Cavity Ringdown Spectroscopy. J. H. Miller, A. R. Awtry, M. E. Moses, A. D. Jewell, and E. L. Wilson. Proc. Combustion Institute, 29 (2) 2203-2209 (2002) https://doi.org/10.1016/S1540-7489(02)80268-1.
  16. Temporally Resolved Species Measurements in a Flickering Air-Diluted, Non-Premixed Natural Gas Flame By Extractive Sampling of Flame Gases and Fourier Transform IR Analysis, E. L. Wilson and J. H. Miller, Proc. Combustion Institute,29 (2) 2711-2718 (2002) https://doi.org/10.1016/S1540-7489(02)80330-3.
  17. Development of a pulsed sampling probe for time-resolved measurements in flickering flames. E. L. Wilson and J. H. Miller. Meas. Sci. Technol. 12, 1701-1708 (2001).  http://stacks.iop.org/mt/12/1701

 

Patent

Patent: MINIATURIZED LASER HETERODYNE RADIOMETER FOR CARBON DIOXIDE, METHANE AND CARBON MONOXIDE MEASUREMENTS IN THE ATMOSPHERIC COLUMN. U.S. Patent No. 8699029 (Filed 2012, Awarded 2014). E.Wilson, M. McLinden.

 

Cutting Edge

·  The mini-LHR was featured in the Fall 2011 issue of the Cutting Edge, Goddard's Emerging Technologies Publication, Page 5.

·  An update on the mini-LHR was featured in the Fall 2012 issue of the Cutting Edge, Goddard's Emerging Technologies Pub.